A Bound and Bound algorithm for the zero-one multiple knapsack problem
نویسندگان
چکیده
منابع مشابه
A Branch and Bound Algorithm for the Knapsack Problem
A branch and bound algorithm for solution of the "knapsack problem," max E vzix where E wixi < W and xi = 0, 1, is presented which can obtain either optimal or approximate solutions. Some characteristics of the algorithm are discussed and computational experience is presented. Problems involving 50 items from which approximately 25 items were loaded were solved in an average of 0.07 minutes eac...
متن کاملA branch-and-bound algorithm for hard multiple knapsack problems
The multiple knapsack problem (MKP) is a classical combinatorial optimization problem. A recent algorithm for some classes of the MKP is bin-completion, a bin-oriented, branch-and-bound algorithm. In this paper, we propose path-symmetry and path-dominance criteria for pruning nodes in the MKP branch-and-bound search space. In addition, we integrate the “bound-and-bound” upper bound validation t...
متن کاملA modified branch and bound algorithm for a vague flow-shop scheduling problem
Uncertainty plays a significant role in modeling and optimization of real world systems. Among uncertain approaches, fuzziness describes impreciseness while for ambiguity another definition is required. Vagueness is a probabilistic model of uncertainty being helpful to include ambiguity into modeling different processes especially in industrial systems. In this paper, a vague set based on dista...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Branch-and-Bound Algorithm for the Knapsack Problem with Conflict Graph
We study the Knapsack Problem with Conflict Graph (KPCG), an extension of the 0-1 Knapsack Problem, in which a conflict graph describing incompatibilities between items is given. The goal of the KPCG is to select the maximum profit set of compatible items while satisfying the knapsack capacity constraint. We present a new Branch-and-Bound approach to derive optimal solutions to the KPCG in shor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1981
ISSN: 0166-218X
DOI: 10.1016/0166-218x(81)90005-6